Clean Nuclear Power for the 21st Century

Part 1 of 2: The Fuel Cycle

Speaker: Ara Barsamian
Refinery Automation Institute, LLC
jabarsa@refautom.com
Tel: (973)-644-2270
Safety and Logistics

• Please familiarize yourselves with the nearest exits

• In case of emergency, WALK, DO NOT RUN!
About the Speaker: Ara Barsamian

- BS, MS (Engineering)
- Member AIChE, ASTM, ISA, IBIA

Exxon Research & Engineering:
- Mainly responsible for computerized fuels production world-wide:
 - Gasoline, Diesel, Bunker Fuel
 - Consultant to Jersey Nuclear on AVLIS; and patent memos on nuclear explosives for stimulation of depleted oil & gas fields

- 3X Corporation: President
- ABB Simcon: VP, Refinery Automation
- RAI: blending consultant
Why Nuclear Power?

High Standards of Living Require MORE ENERGY
Why Nuclear Power?

• Pro’s
 – No GHG, SOX, NOX, VOC
 – Very cheap, predictable cost
 – Inexhaustible (for millenia)

• Con’s
 – Politics, high construction costs (US, EU), disposition of waste
Basis of Nuclear Energy

- Splitting Atoms = Unbalanced Binding Energy = Mass Defect = Energy = mc^2

Fissionable Nucleus

Kinetic Energy = Heat

Unstable

Fission products

+200 MeV of energy

Neutrons

Triggers Splitting

Neutron

U-235
Basis of Nuclear Energy

- Fission results in 2 or more neutrons, which in turn cause more fissions, making possible an exponential (divergent) chain reaction, releasing more and more (kinetic) energy

\[N(t) \sim N_0 e^{(k/\lambda)t} \]
Chain Reaction Needs a Critical Mass

A self-sustaining sequence of fissions needs a minimum mass for the initial neutrons to create new fissions: depends on speed of neutrons, shape of mass, type of fissile material

\[N(t) = N_0 e^{(k/\Lambda)t} \]

\(\Lambda \) = mean n-gen time

k > 1: supercritical
k = 0: critical
k < 0: subcritical

Figure 1.48. Effect of increased mass of fissionable material in reducing the proportion of neutrons lost by escape.
Nuclear Fission Basics

- Fission process (by neutrons) needs fissionable materials
 - Typically ACTINIDES (U, Th, Pu)

- Classes of Actinides
 - Fissionable (only by hi speed neutrons)
 - Fissile (by neutrons of all energies)
Nuclear Fission Basics

• Best Material has high fission cross-section (ease of splitting)
 – Typically U235, and Pu239
 – U238 (common isotope) needs high energy (fast) neutrons; hence not good for power reactors

• U235 is only 0.7% of natural Uranium (U238), hence need for enrichment in isotope 235
Nuclear Fission Basics

• Can we use natural Uranium (99% U238, 0.7% U235), for power reactors?
 – Yes, if we use “moderators” to slow down fission neutrons so they can fission the tiny amount of U235 (0.7%) in the natural Uranium
 – Original reactors (Fermi’s Pile) and Hanford Plutonium reactors did just that
 • Used graphite as moderators
 – Disadvantage: they are huge, and have poor efficiency
Nuclear Fission Basics

• Light Water Reactor (LWR) more efficient than moderated reactors
 – Do not use moderator like Graphite or Heavy Water to slow down neutrons
 – Fuel is natural Uranium (U238), enriched to ~5% U235
 – Advantage:
 • they are smaller, and have good efficiency
 • Produce less Plutonium for weapons
Fig. 1. The nuclear fuel cycle.
Ore to Yellowcake to UF6 Gas

Ore: Pitchblende Yellowcake: U3O8 UF6 Gas
Enrichment Methods for U235

<table>
<thead>
<tr>
<th>Based on</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion in a pressure gradient</td>
<td>Gas centrifuge<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Separation nozzle</td>
</tr>
<tr>
<td></td>
<td>Vortex tube</td>
</tr>
<tr>
<td>Diffusion principles</td>
<td>Gaseous diffusion<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Mass diffusion</td>
</tr>
<tr>
<td></td>
<td>Thermal diffusion</td>
</tr>
<tr>
<td>Phase equilibrium principles</td>
<td>Distillation</td>
</tr>
<tr>
<td>Chemical equilibrium principles</td>
<td>Chemical exchange</td>
</tr>
<tr>
<td></td>
<td>Ion exchange</td>
</tr>
<tr>
<td>Photo excitation principles</td>
<td>Atomic vapor laser isotope separation (AVLIS)</td>
</tr>
<tr>
<td></td>
<td>Molecular laser isotope separation (MLIS)</td>
</tr>
<tr>
<td>Electromagnetic principles</td>
<td>Plasma separation process (PSP)</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic isotope separation (EMIS)</td>
</tr>
<tr>
<td></td>
<td>Plasma centrifuge</td>
</tr>
</tbody>
</table>
1. Enrichment by Gaseous Diffusion
2. Gas Ultra Centrifuge

Iranian/Pakistani Copies of Urenco
Gas Ultra Centrifuges

<table>
<thead>
<tr>
<th>Rotor</th>
<th>Diameter cm</th>
<th>Height m</th>
<th>SWU kg/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>aluminum</td>
<td>10</td>
<td>> 2</td>
</tr>
<tr>
<td>P-2</td>
<td>maraging steel</td>
<td>15</td>
<td>> 5</td>
</tr>
<tr>
<td>TC10</td>
<td>maraging steel</td>
<td>15</td>
<td>> 20</td>
</tr>
<tr>
<td>TC12</td>
<td>carbon fiber</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>AC-100</td>
<td>carbon fiber</td>
<td>60</td>
<td>330</td>
</tr>
<tr>
<td>Enrichment process</td>
<td>Separation factor</td>
<td>Throughput</td>
<td>Specific inventory (kg/U/SWU/year)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Gaseous diffusion</td>
<td>1.004</td>
<td>High</td>
<td>0.1–0.3</td>
</tr>
<tr>
<td>Gas centrifuge</td>
<td>>1.3</td>
<td>Low</td>
<td>–0.0005</td>
</tr>
<tr>
<td>Aerodynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Vortex tube</td>
<td>1.03</td>
<td>High</td>
<td>0.003</td>
</tr>
<tr>
<td>—Separation nozzle</td>
<td>1.015</td>
<td>High</td>
<td>0.002</td>
</tr>
<tr>
<td>Chemical exchange</td>
<td>1.0026</td>
<td>High</td>
<td>1.1</td>
</tr>
<tr>
<td>Ion exchange</td>
<td>1.001</td>
<td>High</td>
<td>0.1–0.4</td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Molecular</td>
<td>2–6</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>—Atomic vapor</td>
<td>2–6</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Electromagnetic isotope separation (EMIS)</td>
<td>~30</td>
<td>Very low</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.1 AVLIS
(atomic vapor laser isotope separation)

In the laser system used for the LIS uranium enrichment process (right), electrons from the 235U atoms are separated (left), leaving positively charged 235U ions that can be easily collected for use.
3.1 Laser – AVLIS

Atomic Vapor Laser Isotope Separation

Diagram labels:
- Laser Beam
- Mirror
- Uranium Vapour
- Crucible
- Tails Collector
- Product Collector
- Electron Beam Gun
3.2 SILEX/Molecular Isotope Separation
Reactor Fuel Fabrication

Steps

1) Convert Enriched U235 to UO2 (pellets)
2) Encase pellets in a sheath of Zirconium Alloy (old reactors had Aluminum sheathing)
Reactor Fuel Fabrication

Steps

1) Convert Enriched U235 to UO2 (pellets)
2) Encase pellets in a sheath of Zirconium Alloy (old reactors had Aluminum sheathing)

(a) Fuel Rod Inspection, no shielding
Burning Fuel in a Power Reactor

Pressurized Water Reactor (PWR)

- Steam generator
- Pressure vessel
- Control rods
- Reactor core
- Containment structure
- Steam
- Turbine
- Generator
- Pump
Spent Fuel Reprocessing

• Most reactors fuel burn-up limited
 – Poison build-up (e.g. Xe) slows/stops fission reaction (absorbs neutrons!!!)
• Most U235 still intact and can be re-used
• U238 in fuel absorbs neutrons and becomes Plutonium 239, also fissile
 – supports chain reaction and produces power
• Need to Recover $$$ U235 and Pu239
Spent Fuel Reprocessing

Uranium Reprocessing

Fuel Slugs

NaOH → Disassembly and Deloading

HNO₃ → Dissolver

Gases

Coating Removal Waste

Evaporator

Waste Discharge

TBP + Kerosene

HNO₃ → Fission Product Removal

HLW

Tank

Dilute HLW

Pu Precipitation and Recovery

Waste Discharge

Pu Reduction Agent

Pu Removal

U and Pu Solutions

U Solutions

UO₂ Recovery

Waste Discharge

HNO₃

U Removal

Source: U.S. Department of Energy
Figure 1: Schematic description of standard PUREX flowsheet

- Fuel input data
- Off-gas treatment
- Dissolution: Nitric Acid
 - Undissolved fuel, insoluble residues and fuel assembly hardware
- Solvent extraction: TriButyl Phosphate + Kerosene
 - Fission products and minor actinide waste
 - Uranium product
 - Plutonium product
- Nitric Acid
- Ferrous Sulphamate
Megatons to Megawatts!!!

• End of Cold War = Tens of Thousands of Nuclear Weapons Cores of HEU235 and Pu239 became SURPLUS!!!
• Surplus Cores of HEU235 and Pu239
 – HEU235 cores converted to UO2 Oxide, downblended from 94% enrichment with U238 to make ~5% U235, and then pressed into fuel pellets for LWR
 – Pu239 cores of ~94% enrichment converted to PuO2 Oxide, and them mixed with UO2
 • Result: MOX (mixed Oxide of U235~93% and Pu239~7%), pressed into ceramic pellets
 • About 30 reactors in EU use MOX
 – Concerns about proliferation (recover Pu239!)
Spent Fuel Waste Handling

• Issue: Spent Fuel Waste Radioactivity
 – Short lived fission products: Cs, Sr, La, Xe, etc.
 • Intensely radioactive, decays to half every 7 hrs
 • Decay Heat - cooling ponds before reprocessing or long terms storage; no imagination how to harvest “free heat”
 – Long lived fuel: low level radioactivity
 • Pu239 - 24,000 yrs, Natural U- millions of years

• No US national strategy what to do
Spent Fuel Waste Handling

- Currently stored in pools or dry storage at the 60+ nuclear reactor sites in the U.S.
- Generated at approximate rate of 2100 MTHM/yr
- Slated for direct disposal into Yucca Mountain geologic repository
 - Yucca Mountain is not licensed or open at this time, spent fuel inventory will exceed legislated capacity before it is opened
Summary

• Plentiful Nuclear Fuel Available for Millenia
 – Natural U for (Heavy Water or Graphite) HWR
 – U enriched to ~5% U235 for LWR
 – MOX of Pu239 and HEU235 for fast reactors

• New
 – Ultra-Safe Reactor Technology, e.g. pebble-bed reactor
 – Modular nuclear reactor for predictable cost and performance

• Politics and ignorant public
 – still fearful of nuclear power (75+% France’s Electricity=66GW, zero accidents in 56 years)
Nuclear Fuel Cycle

Q & A
Credits & References

- Slide 1 – Forbes magazine
- Slide 3 – A. Barsamian-Personal Photo Collection
- Slide 4 -ExxonMobil; Energy Outlook to 2040
- Slide 6, 26 - Garwin, RL; Nuclear Power in World’s Energy Future
- Slide 7, 8 – Glasstone & Dolan; The Effects of Nuclear Weapons
- Slide 13 – ORNL/TM2005/43-Uranium Plant Enrichment Characteristic
- Slide 14 – Wikipedia
- Slide 7, 16, 30 – NNSA/DOE
- Slide 9, 10, 15, 18, 20 – O. Heinonen-Laser and Centrifuge Enrichment
- Slide 21, 22, 23, 24 – Krass, SIPRI 83-Ch.6-Enrichment
- Slide 28, 29, 33 – Todd, T.; Spent Fuel Reprocessing; Idaho Nat Lab